Riemann-Siegel integral formula for the Lerch zeta function
نویسندگان
چکیده
منابع مشابه
High precision computation of Riemann's zeta function by the Riemann-Siegel formula, I
We present rigorous and sharp bounds for the terms and remainder in the Riemann-Siegel formula (for a general argument, not necessarily on the critical line). This allows for the computation of ζ(s) and Z(t) to high precision. We also derive the Riemann-Siegel formula in a new and more direct way.
متن کاملOn the Riemann-Siegel formula
In this article we derive a generalization of the Riemann-Siegel asymptotic formula for the Riemann zeta function. By subtracting the singularities closest to the critical point we obtain a significant reduction of the error term at the expense of a few evaluations of the error function. We illustrate the efficiency of this method by comparing it to the classical Riemann-Siegel formula.
متن کاملThe Lerch zeta function IV. Hecke operators
This paper studies algebraic and analytic structures associated with the Lerch zeta function. It defines a family of two-variable Hecke operators {Tm : m ≥ 1} given by Tm(f )(a, c) = 1 m ∑m−1 k=0 f ( a+k m ,mc) acting on certain spaces of real-analytic functions, including Lerch zeta functions for various parameter values. The actions of various related operators on these function spaces are de...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2012
ISSN: 0025-5718,1088-6842
DOI: 10.1090/s0025-5718-2011-02566-4